Modeling of Fermentation Processes using Online Kernel Learning Algorithm

نویسندگان

  • Yi Liu
  • Diancai Yang
  • Haiqing Wang
  • Ping Li
چکیده

A novel online identification method is developed for nonlinear multi-input multi-output process modeling issue, which is based on kernel learning framework and named as online kernel learning (OKL) algorithm in this paper. This proposed approach can adaptively control its complexity and thus acquire controlled generalization ability. The OKL algorithm performs first a forward increasing for incorporating a “new” online sample and then a backward decreasing for pruning an “old” one, both in a recursive manner. Furthermore, the prior knowledge about process can be easily integrated into the OKL scheme to improve its performance. Numerical simulations on a fed-batch penicillin fermentation process show that the proposed OKL algorithm can learn adaptively the dynamics of the process using relatively small samples, indicating the OKL is an attractive online modeling method for fermentation process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online learning of positive and negative prototypes with explanations based on kernel expansion

The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...

متن کامل

A Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network

Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...

متن کامل

Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM) with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel functi...

متن کامل

Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model

A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008